$\mathbf{1}$	neg quadratic curve intercept $(0,9)$ through $(3,0)$ and $(-3,0)$	1 1 1	condone $(0,9)$ seen eg in table	3

\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 \& ii
iii
iv

v \& \begin{tabular}{l}
$\mathrm{f}(-2)$ used
$$
-8+36-40+12=0
$$ \\
divn attempted as far as $x^{2}+3 x$
$$
x^{2}+3 x+2 \text { or }(x+2)(x+1)
$$
$$
(x+2)(x+6)(x+1)
$$ \\
sketch of cubic the right way up through 12 marked on y axis intercepts $-6,-2,-1$ on x axis
$$
\begin{aligned}
& {[x]\left(x^{2}+9 x+20\right)} \\
& {[x](x+4)(x+5)} \\
& x=0,-4,-5
\end{aligned}
$$

 \&

M1 \\
A1 \\
2 \\
G1 \\
G1 \\
G1 \\
M1 \\
M1 \\
A1

 \&

or M1 for division by $(x+2)$ attempted as far as $x^{3}+2 x^{2}$ then A1 for $x^{2}+7 x+$ 6 with no remainder or inspection with $b=3$ or $c=2$ found; B2 for correct answer allow seen earlier; M1 for $(x+2)(x+1)$ with 2 turning pts; no 3rd tp curve must extend to $x>0$ condone no graph for $x<-6$ or other partial factorisation \\
or B1 for each root found e.g. using factor theorem
\end{tabular} \& 2

2
2
3
3 \\
\hline
\end{tabular}

4	ii	sketch of cubic the correct way up curve passing through $(0,0)$ curve touching x axis at $(3,0)$ $x\left(x^{2}-6 x+9\right)=2$ $x^{3}-6 x^{2}+9 x=2$ subst $x=2$ in LHS of their eqn or in $x(x-3)^{2}=2$ o.e. working to show consistent division of their eqn by $(x-2)$ attempted $x^{2}-4 x+1$	G1 G1 G1 M1 M1 1 1 M1 A1	or $\left(x^{2}-3 x\right)(x-3)=2$ [for one step in expanding brackets] for 2nd step, dep on first M1 or 2 for division of their eqn by $(x-2)$ and showing no remainder or inspection attempted with $\left(x^{2}+k x+c\right)$ seen	3 2

