1 neg quadratic curve intercept $(0, 9)$ <u>through</u> $(3, 0)$ and $(-3, 0)$	1 1 1	condone (0, 9) seen eg in table	3
--	-------------	---------------------------------	---

2	1	x - 2 is factor soi attempt at divn by $x - 2$ as far as $x^3 - 2x^2$ seen in working $x^2 + 2x - 1$ obtained attempt at quad formula or comp square	M1 M1 A1 M1	eg may be implied by divn or other factor $(x^2 \dots -1)$ or $(x^2 + 2x \dots)$ or B3 www ft their quadratic	
		$-1\pm\sqrt{2}$ as final answer	A2	A1 for $\frac{-2\pm\sqrt{8}}{2}$ seen; or B3 www	6
	ii	$f(x-3) = (x-3)^3 - 5(x-3) + 2$ (x-3)(x ² - 6x + 9) or other constructive attempt at expanding (x-3) ³ eg 1 3 3 1 soi	B1 M1	or $(x - 5)(x - 2 + 2\sqrt{x - 2} - 2\sqrt{x})$ soi or ft from their (i) for attempt at multiplying out 2 brackets or valid attempt at multiplying all 3	
		x ³ - 9x ² + 27x - 27 - 5x + 15 [+2]	A1 B1	alt: A2 for correct full unsimplified expansion or A1 for correct 2 bracket expansion eg $(x - 5)(x^2 - 4x + 2)$	4
	111	5 $2\pm\sqrt{2}$ or ft	B1 B1	condone factors here, not roots if B0 in this part, allow SC1 for their roots in (i) – 3	2

3		f(-2) used	M1	or M1 for division by $(x + 2)$ attempted	
		-8 + 36 - 40 + 12 = 0	A1	as far as $x^3 + 2x^2$ then A1 for $x^2 + 7x + 3x^2$	
				6 with no remainder	2
	ii	divn attempted as far as $x^2 + 3x$	M1	or inspection with $b = 3$ or $c = 2$ found;	
		$x^{2} + 3x + 2$ or $(x + 2)(x + 1)$	A1	B2 for correct answer	2
	iii	(x+2)(x+6)(x+1)	2	allow seen earlier;	
				M1 for $(x + 2)(x + 1)$	2
	iv	sketch of cubic the right way up	G1	with 2 turning pts; no 3rd tp	
		through 12 marked on y axis	G1	curve must extend to $x > 0$	
		intercepts -6 , -2 , -1 on x axis	G1	condone no graph for $x < -6$	3
	v	$[x](x^2 + 9x + 20)$	M1	or other partial factorisation	
		[x](x+4)(x+5)	M1		
		x = 0, -4, -5	A1	or B1 for each root found e.g. using	
				factor theorem	3

				-	
4		sketch of cubic the correct way	G1		
		up	G1		
		curve passing through (0, 0)	G1		3
		curve touching x axis at $(3, 0)$			
	ii	$x(x^2-6x+9)=2$	M1	or $(x^2 - 3x)(x - 3) = 2$ [for	
				one step in expanding	
		$x^3 - 6x^2 + 9x = 2$	M1	brackets]	2
				for 2nd step, dep on first M1	
	iii	subst $x = 2$ in LHS of their eqn	1	or 2 for division of their eqn	
		or in $x(x-3)^2 = 2$ o.e.		by $(x-2)$ and showing no	
		working to show consistent	1	remainder	
		C			
		division of their eqn by $(x - 2)$	M1		
		attempted		or inspection attempted with	
		$x^2 - 4x + 1$	A1	$(x^2 + kx + c)$ seen	

	soln of their quadratic by formula or completing square attempted $x = 2 \pm \sqrt{3}$ or $(4 \pm \sqrt{12})/2$ isw locating the roots on intersection of their curve and y = 2	M1 A2 G1	condone ignoring remainder if they have gone wrong A1 for one correct must be 3 intns; condone $x =$ 2 not marked; mark this when marking sketch graph in (i)	7 G1
--	---	----------------	--	---------

5	i	grad AB = $\frac{9-1}{2}$ or 2	M1		
		y - 9 = 2(x - 3) or $y - 1 = 2(x + 1)$	M1	ft their <i>m</i> , or subst coords of A or B in $y =$ their <i>m</i> $x + c$	
		<i>y</i> = 2 <i>x</i> + 3 o.e.	A1	or B3	3
	11	mid pt of AB = (1, 5)	M 1	condone not stated explicitly, but	
		grad perp = -1/grad AB	M1	soi by use eg in eqn	
		$y - 5 = -\frac{1}{2}(x - 1)$ o.e. or ft [no ft for just grad AB used]	M1	ft their grad and/or midpt, but M0 if their midpt not used; allow M1 for $y = -\frac{1}{2}x + c$ and then their midpt subst	
		at least one correct interim step towards given answer $2y + x =$ 11, and correct completion NB ans $2y + x =$ 11 given	M1	no ft; correct eqn only	

	alt method working back from		mark one method or the other, to benefit of cand, not a mixture		
	$y = \frac{11 - x}{2}$ o.e.	M1	bonone of carra, not a mixturo		
	grad perp = -1/grad AB and showing/stating same as given line	<mark>M</mark> 1	eg stating $-\frac{1}{2} \times 2 = -1$		
	finding into of their $y = 2x + 3$ and $2y + x = 11 [= (1, 5)]$	M1	or showing that $(1, 5)$ is on $2y + x = 11$, having found $(1, 5)$ first	4	
	showing midpt of AB is (1, 5)	M1	[for both methods: for M4 must be fully correct]		
m	showing $(-1 - 5)^2 + (1 - 3)^2 = 40$	M1	at least one interim step needed for each mark; M0 for just $6^2 + 2^2 = 40$		
	showing B to centre = $\sqrt{40}$ or verifying that (3, 9) fits given circle	M1	with no other evidence such as a first line of working or a diagram; condone marks earned in reverse order	2	
iv	$(x-5)^2 + 3^2 = 40$	M1	for subst $y = 0$ in circle eqn		
	(x - 5) ² = 31	M1	condone slip on rhs; or for rearrangement to zero (condone one error) and attempt at quad. formula [allow M1 M0 for $(x - 5)^2 = 40$ or for $(x - 5)^2 + 3^2 = 0$]		
	$x = 5 \pm \sqrt{31}$ or $\frac{10 \pm \sqrt{124}}{2}$ isw	A1	or $5 \pm \sqrt{124}$	2	12